
The transparent web
Bridging the chasm in web development

“The best way to predict the
future is to invent it.”

-Alan Kay

How did we get here?

•Shout-out to TBL!

•Web: 21 years and 12 days old!

•Was: Pages

•Nowadays: Applications...

What do I mean by “transparent
web?”

•You know you are designing for two different platforms:

•Server-side

•Client-side

•“Transparent web” - you shouldn’t have to!

How?
•It’s early and techniques vary, but there are some themes:

•[Purely] functional

•Strongly typed

•Automatic generation of client/server communication

•Explicit syntax for DB/HTML (or a DSL)

•Functional reactive code for UI

Why?

•Three main problems of webapps:

•Security

•Tons of sometimes-conflicting languages

•You’re often also the sysadmin

Security

•Injection attacts:

•Often a confusion of type: string vs. SQL vs. JavaScript

•Fix with types:

<html>foo</html> != “<html>foo</html>”

Tons of languages

•Tower of Babel...

•Languages or markup needed by the working web
developer (there are more + var. frameworks):

•Markup (HTML), application code (Ruby), client-side
(JavaScript), javascript abstraction layer (jQuery &etc.),
style (CSS), DB (SQL)

Sysadminery
•Configuring hosts files

•Setting up:

•RDBMSs

•Web servers

•Deployment

•This is all vitally important, but it’s not programming

It’s going to ruin my code

•It is common to have that feeling:

1. “That C code is going to produce crap compared to what I
could write in assembly” - J. Random Hacker

2. “Garbage collection means that my program is going to be
slow and crappy.” - J. Random Hacker, Jr.

It’s going to ruin my code
•But, history has chosen:

1. Assembly vs. C (or other HLL) is settled: 
high-level languages.

2. Manual vs. automatic memory management perhaps settled: 
automatic (garbage collection).

• Programmer productivity & the elimination of certain kinds of
errors is usually a big win

It’s going to ruin my code
•I have seen the future and

it is:

•Separate client/server
apps & programmer-
managed distribution vs.
unified app & automatic
distribution: 
unified & automatic

What’s the alternative?

•For the first time, some are starting to show up!

•Opa

•Ur/Web

•Meteor.js ran out of time :(

Not really JS-related,
skipping

So, Opa...

•I don’t know what counts as a JS framework, but...

•Opa is a language (with libraries!) that compiles to JS, more
like coffeescript

•See also: List of languages that compile to JS · jashkenas/
coffee-script Wiki · GitHub (Opa falls under “Tierless
languages”)

https://github.com/jashkenas/coffee-script/wiki/List-of-languages-that-compile-to-JS

Example: hello world

•Let’s do “Hello world!”... <sigh>

•But it gets you past the “how the !@#&^$ do I even compile
this?” phase (or at least for me)

•And it fits on a slide :)

Opa: Hello world!

function main() {	
 <h1>Hello, world!</h1>	
}	
!

Server.start(Server.http,	
 {title: "Hello, world!", page: main})

helloworld.opa

cough node.js *cough*

var http = require('http');	
http.createServer(function (req, res) {	
 res.writeHead(200, {'Content-Type': 'text/plain'});	
 res.end('Hello World\n');	
}).listen(1337, '127.0.0.1');

Opa: Hello world!

...compile, run:
$ opa helloworld.opa	
$./helloworld.js	
http://localhost:8080

http://localhost:8080/Helloworld/main

Opa: Hello world!

•main returns an xhtml fragment, the compiler knows that this
is XHTML and not a string

•notice lack of: “ “

•the server then sets us up with a page

Example: comments

•Let’s storycard this: I’d like to be able to...

•Fill in name, comment, email, click “comment” and

•Show past comments (implies persistent storage)

http://en.wikipedia.org/wiki/User_story

Opa: Comments

•Source...

http://dl.dropbox.com/u/74322/comments.opa.html

Opa: Comments

•To compile and run: 
opa comments.opa  
./comments.js  
[...creates mongodb datastore...]  

Example: real-time chat

•Start a project: 
$ opa create chat_opa

Real-time chat

•login is a work in progress...

•run: 
./chat_opa.exe	

•browse: 
http://localhost:8080/chat

http://localhost:8080/chat

Thanks!
•I’m Chris Wilson:

•chris@bendyworks.com

•@twopoint718

•Normally, I hack Rails for Bendyworks

•...and thanks to them for letting me use some 20% time for
this :)

mailto:chris@bendyworks.com?subject=Re:%20Transparent%20Web
https://twitter.com/twopoint718

Questions

•I’ll do my best :)

Resources

1. http://opalang.org/

1.1.http://www.mongodb.org/

1.2.http://nodejs.org/

http://opalang.org/
http://www.mongodb.org/
http://nodejs.org/

