
Writing code that I'm not
smart enough to write

A funny thing happened at Lambda Jam

Background

"Let’s make a lambda calculator" —
Rúnar Bjarnason

Task: write an interpreter for the
lambda calculus

Lambda Calculus
Variables: f, g , x, y, z, & etc.

Function application: f x ("f applied to x")

Lambda abstraction 
λx.y

(meaning, an anonymous function
that takes x and returns y)

More on λ calculus
It's like* a Turing machine, you can calculate
anything with it!

0: λf.λx.x  
1: λf.λx.f x 
2: λf.λx.f (f x) 
3: λf.λx.f (f (f x))  
… etc.

add: λm.λn.λf.λx.m f (n f x)

* "like" meaning "provably equivalent to"

Add one and one
one: λf.λx.f x, two: λf.λx.f (f x)

add: λm.λn.λf.λx.m f (n f x) 

λf.λx.one f (one f x) 
λf.λx.(λg.λy.g y) f ((λh.λz.h z) f x) 
λf.λx.(λg.λy.g y) f (f x) 
λf.λx.(λy.f y) (f x) 
λf.λx.f (f x) — two!

substitution

α-rename

β-reduction

It actually works

But don't take my word for it!

"Understanding 
Computation" by Tom 
Stuart

Example
(1..100).map do |n|
 if (n % 15).zero?
 'FizzBuzz'
 elsif (n % 3).zero?
 'Fizz'
 elsif (n % 5).zero?
 'Buzz'
 else
 n.to_s
 end
end

In the lambda calculus

Back to me

So I'm supposed to implement an
interpreter for this language

What I'm given: Terms
data Term
 = Var String
 | Lit Int
 | App Term Term
 | Lam String Term λx.x

f x

What I'm given: Values

data Value
 = Val Int
 | Fun (Value -> Value)

This is the
"runtime" representation

of functions

What I'm given: Values

type Env = [(String, Value)]

This is where variables
"live"

Okay, now go write it…
I had no idea how to do this

BUT… "follow the types"

Some parts are easy
find :: Env -> String -> Value
-- gets a value from the env.
!

eval :: Env -> Term -> Value
eval e (Var s) = find e s
eval _ (Lit i) = Val i
-- harder stuff…

Then it got harder
eval :: Env -> Term -> Value
eval e (Var s) = find e s
eval _ (Lit i) = Val i
eval e (App f x) = let (Fun f') = eval e f
 x' = eval e x
 in f' x'

Since eval returns a
Value, f' must be

Value -> Value

similarly,
x' must be a

Value

eval :: Env -> Term -> Value
eval e (Var s) = find e s
eval _ (Lit i) = Val i
eval e (App f x) = let (Fun f') = eval e f
 x' = eval e x
 in f' x'
eval e (Lam s t)
 = Fun (\v -> eval (e ++ [(s, v)]) t)

My brain errored-out on
this one

the lambda
evals in a new
environment

Value -> Value

eval :: Env -> Term -> Value
eval e (Var s) = find e s
eval _ (Lit i) = Val i
eval e (App f x) = let (Fun f') = eval e f
 x' = eval e x
 in f' x'
eval e (Lam s t)
 = Fun (\v -> eval (e ++ [(s, v)]) t)

My brain errored-out on
this one

I didn't really know
how to write this. I
followed the types

Meditations on learning
Haskell

"I routinely write code in Haskell that
I am not smart enough to write."
"…I just break it down into simple enough pieces and
make the free theorems strong enough by using
sufficiently abstract types that there is only one
definition."

http://bitemyapp.com/posts/2014-04-29-
meditations-on-learning-haskell.html

http://bitemyapp.com/posts/2014-04-29-meditations-on-learning-haskell.html

Free theorems?

Theorems for free!

Great paper that
starts with a game:

Tell me the type of a
polymorphic function,
but don't let me see
how it's implemented…

First

The paper focuses on a different theorem
for map (and we'll get to that) BUT

The same sort of reasoning can also help
us WRITE it in the first place.

map

map :: (a -> b) -> [a] -> [b]

You're given a
function from a to b

…and a list of a's

So…
We don't know ANYTHING about what type
'a' and 'b' are (they could both be anything)

We MUST produce a list of b

And we're only given that function: a -> b

therefore: we can't call any function on
them EXCEPT the one we're given

map

map :: (a -> b) -> [a] -> [b]

We have this
function

Don't know what
these are

Must produce list
of b

map

map :: (a -> b) -> [a] -> [b]
map _ [] = []

List has two
constructors, the first is

empty

data [a]
= []

 | a : [a]

map

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x

data [a]
= []

 | a : [a]Only way to get a 'b'.
But we also need a list…

map

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs

A list of 'b's is
a 'b'…

…consed onto a
list of 'b's

':' aka "cons"
(:) :: b -> [b] -> [b]

map

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs

"The only 'b'
that we have"

"The only list of 'b'
that we have"

':' aka "cons"
(:) :: b -> [b] -> [b]

But there's more…

Type variables in Haskell must work for
ANY type

This is a strong claim and it gives us
extra information, just from the types!

map: free theorem!

map :: (a -> b) -> [a] -> [b]
!

reverse :: [a] -> [a]
!

map f . reverse == reverse . map f

any
function that just

rearranges
any 'f' not

gonna
prove it

filter

filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs) = if p x
 then x : filter p xs
 else filter p xs

Filter: things to note
The output list must be composed only
from elements in the input list

Only other things we know:

length of list

result of calling p on the list elements

Map: things to note

map doesn't change the length of a list

map f . map g = map (f . g)

Filter: free theorem!

filter p (map h xs) = map h (filter (p . h) xs)

Intuitively, what's that
mean?

filter p (map h xs) = map h (filter (p . h) xs)

"filtering transformed things is the same
as transforming things that you've pre-
filtered"

Final note:
hiding in plain sight

map :: (a -> b) -> [a] -> [b]

In some sense, the 'a' type is "hidden"

Or compose:  
(b -> c) -> (a -> b) -> a -> c

The 'b' type never "escapes" and we can't
do anything with it

Note

The MORE polymorphic something is, the
FEWER implementations are possible

Things to check out

http://daniel.yokomizo.org/2011/12/
understanding-higher-order-code-
for.html

"Theorems for free!" by Wadler

http://daniel.yokomizo.org/2011/12/understanding-higher-order-code-for.html

Thanks

