
Haskell ❤️ Business
Rules

Modeling your stuff with glorious, chewy, types

Business Rules

• What fields are linked?

• What values are optional (important, etc.)?

• What constraints are there?

• Domain logic?

Other things

• Have to communicate with stake holders/domain
experts

• Cucumber?

• Express ourselves clearly

• conversations

• but also code

Represent

data Contact = Contact  
 { firstName :: String  
 , middleInitial :: String  
 , lastName :: String  
 , emailAddress :: String  
 , isVerified :: Bool  
 } deriving (Show, Eq)

Represent

data Contact = Contact  
 { firstName :: String  
 , middleInitial :: String  
 , lastName :: String  
 , emailAddress :: String  
 , isVerified :: Bool  
 } deriving (Show, Eq)

I'm going to
omit this later

Well...

data Contact = Contact  
 { firstName :: String  
 , middleInitial :: String  
 , lastName :: String  
 
 , emailAddress :: String  
 , isVerified :: Bool  
 }

These are really
linked...

Well...

data Contact = Contact  
 { firstName :: String  
 , middleInitial :: String  
 , lastName :: String  
 
 , emailAddress :: String  
 , isVerified :: Bool  
 }

As are
these

There are lots of
constraints lurking

• Teasing these out can be real work!

• Communicating with the domain expert is
essential

• BUT! FP has great answers for many situations

Factor things out

data PersonalName = PersonalName  
 { firstName :: String  
 , middleInitial :: String  
 , lastName :: String  
 }  
 
data Contact = Contact  
 { name :: PersonalName  
 , emailAddress :: String  
 , isVerified :: Bool  
 }

This is now
separate

Business Rule++

data PersonalName = PersonalName  
 { firstName :: String  
 , middleInitial :: Maybe String  
 , lastName :: String  
 }  
 
data Contact = Contact  
 { name :: PersonalName  
 , emailAddress :: String  
 , isVerified :: Bool  
 }

You don't have
to have a middle

name

"We got some empty
names"

data PersonalName = PersonalName  
 { firstName :: String  
 , middleInitial :: Maybe String  
 , lastName :: String  
 }  
 
data Contact = Contact  
 { name :: PersonalName  
 , emailAddress :: String  
 , isVerified :: Bool  
 }

Do we really want
ANY string?

Smart constructors

newtype NonEmptyStr = NES String  
 
mkNonEmptyString :: String  
 -> Maybe NonEmptyStr  
mkNonEmptyString s  
 | length s > 0 = Just (NES s)  
 | otherwise = Nothing

A do-nothing
wrapper

The smart constructor
guards creation of

our type

Names: yes!

data PersonalName = PersonalName  
 { firstName :: NonEmptyStr  
 , middleInitial :: Maybe String  
 , lastName :: NonEmptyStr  
 }  
 
data Contact = Contact  
 { name :: PersonalName  
 , emailAddress :: String  
 , isVerified :: Bool  
 }

Note lack of "Maybe"
at this point, we've
already checked

"We got some bad email
addresses"

data PersonalName = PersonalName  
 { firstName :: NonEmptyStr  
 , middleInitial :: Maybe String  
 , lastName :: NonEmptyStr  
 }  
 
data Contact = Contact  
 { name :: PersonalName  
 , emailAddress :: String  
 , isVerified :: Bool  
 } We can do better

Make illegal states
unrepresentable

newtype Email = Email String  
 
mkEmail :: String -> Maybe Email  
mkEmail s = do  
 match <- s =~~ ".*@example.com$"  
 return (Email match)

More smart constructors! this would
be the only function exported for

creating 'Email's

Email: yes!

data PersonalName = PersonalName  
 { firstName :: NonEmptyStr  
 , middleInitial :: Maybe String  
 , lastName :: NonEmptyStr  
 }  
 
data Contact = Contact  
 { name :: PersonalName  
 , emailAddress :: Email  
 , isVerified :: Bool  
 }

We now know
this is an Email

Business Rule++

data PersonalName = PersonalName  
 { firstName :: NonEmptyStr  
 , middleInitial :: Maybe String  
 , lastName :: NonEmptyStr  
 }  
 
data Contact = Contact  
 { name :: PersonalName  
 , phone :: String  
 , emailAddress :: Email  
 , isVerified :: Bool  
 } Phone plz.

"Well they don't have to have a
phone, but we want to contact them"

data PersonalName = PersonalName  
 { firstName :: NonEmptyStr  
 , middleInitial :: Maybe String  
 , lastName :: NonEmptyStr  
 }  
 
data Contact = Contact  
 { name :: PersonalName  
 , phone :: Maybe String  
 , emailAddress :: Email  
 , isVerified :: Bool  
 } Phone plz?

"...and we'd prefer a phone
number, but having both is OK"

data PersonalName = PersonalName  
 { firstName :: String  
 , middleInitial :: Maybe String  
 , lastName :: String  
 }  
 
data Contact = Contact  
 { name :: PersonalName  
 , phone :: Maybe String  
 , emailAddress :: Maybe Email  
 , isVerified :: Bool  
 }

Hmm, this
won't work

And this could
be fixed up

Algebraic Data Types

newtype Phone = Phone String  
 
data ContactInfo =  
 EmailOnly Email  
 | PhoneOnly Phone  
 | EmailAndPhone Email Phone

3 ways to construct
a value of type

ContactInfo

and a smart
constructor...

Make Email more
coherent

newtype VerifiedEmail =  
 VerifiedEmail Email  
 
verifyEmail :: Email -> VerifiedEmail  
 
data ContactInfo =  
 EmailOnly VerifiedEmail  
 | PhoneOnly Phone  
 | EmailPhone VerifiedEmail Phone

Wrap Email in a type
that captures the

isVerified constraint

Only way to get
a VerifiedEmail

Use it!

Much better

data PersonalName = ...  
 
data ContactInfo =  
 EmailOnly VerifiedEmail  
 | PhoneOnly Phone  
 | EmailPhone VerifiedEmail Phone  
 
data Contact = Contact  
 { name :: PersonalName  
 , contact :: ContactInfo  
 }

Same as before

"Not all contacts are of
the same reliability..."

data PersonalName = ...  
 
data ContactInfo =  
 EmailOnly VerifiedEmail  
 | PhoneOnly Phone  
 | EmailPhone VerifiedEmail Phone  
 
data Contact = Contact  
 { name :: PersonalName  
 , contact :: ContactInfo  
 }

Want a 0 to 5
rating

"Not all contacts are of
the same reliability..."

mkStars :: InBounds n => n -> Stars n  
mkStars _ = Stars	

addStar :: InBounds (S n) => Stars n  
 -> Stars (S n)  
addStar _ = Stars	

removeStar :: InBounds n => Stars (S n)  
 -> Stars n  
removeStar _ = Stars  
 
data Stars n = Stars

smart
constr.

All the action is at the
type level. There are no
useful values around!

"n" is a phantom type

Stars: yes!

data PersonalName = ...  
data ContactInfo = ...  
 
data Contact = Contact  
 { name :: PersonalName  
 , contact :: ContactInfo  
 , rating :: Stars Zero  
 }

Must start at zero

*[Some type-level hackery
omitted]

• We can enforce 0 to 5 stars at compile time

• This isof questionable "worth-it-ness"

• But 100% cool

• Actually can't be tested!

• Any code testing an illegal out-of-bounds
condition won't compile (as intended)

won't compile?

main = hspec $ do  
 describe "Stars" $ do  
 it "Adding stars works" $ do  
 addStar (mkStars s4) `shouldBe` (mkStars s5)  
 
 -- it "Can't compile this test" $ do  
 -- addStar (mkStars s5) `shouldBe` undefined

This failing test can't
even be written

This test is actually
happening in the

type system

Review: went from this...

data Contact = Contact  
 { firstName :: String  
 , middleInitial :: String  
 , lastName :: String  
 , emailAddress :: String  
 , isVerified :: Bool  
 } deriving (Show, Eq)

Review: to this.*
data PersonalName = PersonalName  
 { firstName :: NonEmptyStr  
 , middleInitial :: Maybe String  
 , lastName :: NonEmptyStr  
 }  
 
data ContactInfo =  
 EmailOnly VerifiedEmail  
 | PhoneOnly Phone  
 | EmailAndPhone VerifiedEmail Phone  
 
data Contact = Contact  
 { name :: PersonalName  
 , contactInfo :: ContactInfo  
 , rating :: Stars Zero  
 }

This could reasonably
be shown to a
domain expert

*(smart constructors
& etc. omitted)

Review

• Overall: 180 lines

• ~20 lines of type definitions

• ~40 lines of smart constructors

• ~40 lines of custom show functions (can be
automatically written for you)

• ~50 lines of comments/whitespace

• ~30 lines gratuitous type hackery (this was just for
fun)

Review

• Gained a lot of clarity into the business domain

• We can talk very precisely with the client using
concrete and specific data types

• Refactorable, testable, and intention-revealing

• Unvalidated data is excluded from the application
before it ever enters

• If we have a Contact we know it's good (been
validated)

Thanks!

• Based heavily on: Domain Driven Design, F# and
Types

• Okay, it's basically just a translation of the above
(excellent) talk into Haskell

• Unit testing isn't enough

• http://www.haskell.org/haskellwiki/
Smart_constructors

• http://okmij.org/ftp/Haskell/eliminating-array-
bound-check.lhs (<- not for the faint of heart)

http://fsharpforfunandprofit.com/ddd/
http://evanfarrer.blogspot.com/2012/06/unit-testing-isnt-enough-you-need.html
http://www.haskell.org/haskellwiki/Smart_constructors
http://okmij.org/ftp/Haskell/eliminating-array-bound-check.lhs

Me ❤️

• Chris Wilson

• @twopoint718

• chris@bendyworks.com

mailto:chris@bendyworks.com

