Haskell ® Business

Rules
Modeling your stuff with glorious, chewy, types

2USIiness Rules

. What fields are linked?

. What values are optional (important, etc.)?

. What constraints are there?

- Domain logic?

OTher Things

. Have To communicate with stake holders/domain

experts

. Cucumber?

—Xpress ourselves clearly
. conversaftions

. but also code

Represent

data Contact = Contact

firstName :: String
middleInitial :: String
LastName . String
emaillAddress :: String
1sVerified : . Bool
deriving (Show, Eq)

Represent

data Contact = Contact

{ firstName :: String
, middleInitial :: String
, LastName . String
, emailAddress :: String
, 1sVerified : ¢ Bool

} deriving (Show, Eq).

V. I'm going to
omit this later

Well...

These are really

data Contact = Contact !fﬁedu

t Firsthome X St"iﬂg.fff"
) middleInitial :: StPingﬁfz

, emailAddress :: String
, 1sVerified . ¢ Bool

¥

Well...

data Contact = Contact

{

)

)

f1irstName :
middleInitial ::
lLastName

emallAddress
1sVerified

;. String

String

;. String

11 String €—__

~— AS are

these

Ihere are |lofs of
constraints lurking

edsing tThese out can be real work!

. Communicating with tThe domain expert Is

essentidl

- BUT!I FP has great answers for many situations

-actor Things out

data PersonalName = PersonalName .

{ firstName :: String

, middleInitial :: String .

, LastName .. String This is now
1 separate

data Contact = Contact

{ name .. PersonalName
, emailAddress :: String
, isVerified :: Bool

¥

2USINess Rule++

You don't have

to have a middle
data PersonalName = PersonalName

/ hame
{ firstName :: String ﬁff
, middleInitial :: Maybe String
, LastName :: String
}
data Contact = Contact
{ name : . PersonalName
, emaillAddress :: String
, 1sVerified . ¢ Bool

¥

‘We got some empty

I
NAMmes

data PersonalName = PersonalName

{ firstName ;1 String

, middleInitial :: Maybe Btring

. lastName .. String \

Iy ~ Do we really want

ANY string?

data Contact = Contact

{ name : . PersonalName

, emaillAddress :: String

, 1sVerified .. Bool

¥

SMart constructors

A do-nothing
wrapper

¥

newtype NonEmptyStr = NES String

mkNonEmptyString :: String
-> Maybe NonEmptyStr
mkNonEmptyString s
7 | length s > 0 = Just (NES s)
| otherwise = Noth1ing

The smart constructor
guards creation of
our type

Names: yes!

data PersonalName = PersonalName

{ firstName : ¢ NonEmptyStr,

, middleInitial :: Maybe String\

. lastName .2 NonEmptyStr

} R\No’re lack of "Maybe”

at this point, we've

data Contact = Contact already checked

{ name : . PersonalName

, emaillAddress :: String

, 1sVerified . ¢ Bool

¥

"We got some baa emal

I
addresses
data PersonalName = PersonalName
{ firstName : : NonEmptyStr
, middleInitial :: Maybe String
, LastName : : NonEmptyStr
}
data Contact = Contact
{ name .. PersonalName
, emailAddress :: String_
, isVerified :: Bool

We can do better

¥

Make lllegal states
Unrepresentaple

newtype Email = Email String

mkEmail :: String -> Maybe Email
mkEmail s = do

match <- s =~~ ".*@example.com$"
return (Email match)

More smarf constructors! this would
be the only function exported for
creating 'Email's

—mail: yes!

data PersonalName = PersonalName

{ firstName : ¢ NonEmptyStr
, middleInitial :: Maybe String
, LastName : : NonEmptyStr
}

data Contact = Contact
{ name : . PersonalName
, emailAddress :: Emailg

, 1sVerified : . Bool ~ We now know
} this is an Email

2USINess Rule++

data PersonalName = PersonalName
{ firstName : ¢ NonEmptyStr
, middleInitial :: Maybe String
, LastName : ¢ NonEmptyStr
}

data Contact = Contact
{ name : . PersonalName
, phone 11 String o
. emailAddress :: Email
, 1sVerified : ¢ Bool

1 ~Phone plz.

"Well they dont have to have @
pnone, but we want to contact them’

data PersonalName = PersonalName

{ firstName : ¢ NonEmptyStr
, middleInitial :: Maybe String
, LastName : ¢ NonEmptyStr
5

data Contact = Contact
{ name : . PersonalName
, phone : ¢ Maybe String
, emailAddress :: Email o

. isVerified :: Bool
} Lsverirtie o]0 Phone plz?

"..and wed prefer a phone
number, but having both is OK”

data PersonalName = PersonalName
{ firstName . String
, middleInitial :: Maybe String
, LastName . String
¥
data Contact = Contact
{ name : . PersonalName
. phone . Maybe String g—- Hmm, this

emailAddress :: Maybe Email & " won't work

isVerified :: Booleg

S And this could
be fixed up

)

)

¥

Algepbraic Data lypes

and a smart
~~ constructor...

newtype Phone = Phoné{String

3 ways to construct
data ContactInfo = ~= @ value of type

EmailOnly Email™ .~ ConfactInfo
| PhoneOnly Phone &~ /
| EmailAndPhone Email Phone

Make Emaill more
conerent

Wrap Email in a type

e : that captures the
newtype VerifiedEmaill =4&—7iyerified constraint
VerifiedEmail Email

verifyEmail :: Email -> VerifiedEmail

Only way to get
data ContactInfo = a VerifiedEmail

Emai1lOnly VerifiedEmail
| PhoneOnly Phone
| EmailPhone VerifiedEmail Phone

- Use it

Much better

-~ Same as before

data PersonalName = ...

data ContactInfo =
EmailOnly VerifiedEmail
| PhoneOnly Phone
| EmailPhone VerifiedEmail Phone

data Contact = Contact
{ name : . PersonalName
, contact : ¢ ContactInfo

¥

‘NoT all contacts are of
the same reliapility...”

data PersonalName = ...

data ContactInfo =
EmailOnly VerifiedEmail
| PhoneOnly Phone
| EmailPhone VerifiedEmail Phone

__ WantaOtod
data Contact = Contact ¢« rating
{ name : . PersonalName
, contact : ¢ ContactInfo

¥

‘NoT all contacts are of

smart

”3: the same reliapllity...

mkStars :: InBounds n = n -> Stars n
mkStars = Stars

addStar :: InBounds (S n) => Stars n

-> Stars (S n) All the action is at the
addStar _ = Stars type level. There are no
useful values around!
removeStar :: InBounds n => Stars (S n)
-> Stars n
removeStar _ = Stars

data Stars n = Stars

n" is a phantom type

Stars: yesl

data PersonalName = ...
data ContactInfo = ...

data Contact = Contact

{ name : . PersonalName
, contact :: ContactInfo
, rating :: Stars Zero

} \

Musf start at zero

“[Some type-level hackery
omitted|

- We can enforce O To O stars at compile time

his Isof questionable "'worth-it-ness’
- But 100% cool
- Actuadlly cant be tested!

- Any code festing an illegal out-of-bounds
condition won't compile (as infended)

wonTt compile?

This test is actually
happening in the
- type system

main = hspec $ do /
describe "Stars" $ do f

it "Adding stars works" $ do
addStar (mkStars s4) “shouldBe ™ (mkStars s5)

-- it "Can't compile this test" $ do
-- addStar (mkStars s5) "shouldBe undefined

\

This failing test can't
even be written

Review: went from This...

data Contact = Contact

{ firstName :: String
, middleInitial :: String
, LastName . String
, emailAddress :: String
, 1sVerified : ¢ Bool

} deriving (Show, Eq)

Review: To Tthis.”

data PersonalName = PersonalName

{ firstName : ¢ NonEmptyStr
, middleInitial :: Maybe String
, LastName : ¢ NonEmptyStr
¥

data ContactInfo = could reasonably

EmailOnly VerifiedEmail be shown to a

| PhoneOnly Phone domain expert
| EmailAndPhone VerifiedEmail Phone p

data Contact = Contact

{ name : ¢ PersonalName
, contactInfo :: ContactInfo
, rating : . Stars Zero

¥

*(smart constructors
& etc. omitted)

Review

. Overdadll: 180 lines

- ~20 lines of type definitions
. ~40 lines of smart constructors

. ~40 lines of custom show functions (can be
automatically written for you)

.+ ~20 lines of comments/whitespace

. ~30 lines gratuitous type hackery (this was just for
fun)

Review

- Gained a lot of clarity info the business domain

- We can talk very precisely with the client using
concrete and specific data types

- Refactorable, testable, and infention-revealing

- Unvalidatead data is excluged from fthe application

before |t ever enters

. If we have a Contact we know it's good (been
validated)

Thanks

- Based heavily on: Domain Driven Design. E# and
lypes

- Okay, It's basicdlly just a franslafion of the above
(excellent) Talk into Haskel

- Unit festing isnt enoughn

- hitp:.//www.haskell.org/naskellwiki/
smart _constructors

- hitp:.//okmij.org/ftp/Haskell/eliminating-array-
bound-check lhs (<- not for the faint of heart)

http://fsharpforfunandprofit.com/ddd/
http://evanfarrer.blogspot.com/2012/06/unit-testing-isnt-enough-you-need.html
http://www.haskell.org/haskellwiki/Smart_constructors
http://okmij.org/ftp/Haskell/eliminating-array-bound-check.lhs

- Chris Wilson
. @twopoint/18

. chris@bendyworks.com

Me ¢

mailto:chris@bendyworks.com

