Let's Build A Particle Accelerator A nerd's-eye view

What kind?

* Linac

- # Electron photon'
- * Proton-Antiproton

How about a...

- * Alternating gradient synchrotron? Sure!
- * (you can keep your cyclotrons)

Magnets - $\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$

- Dipole bend the beam
- * Quadrupole focus the bean
- Sextupole correct the focus
- * Octupole correct the chromaticity

Beam

- * Phase space stability
- * Dispersion
- * Tune, chromaticity
- * A real-world application for irrational numbers

Trivia

* Check out this log

Vacuum

- Better than the moon, much better
- * Vacuum pumps
 - Roughing
 - * Turbo
 - * Ion
 - * Diffusion

* Very low temps capture gasses

Cooling

- * LN2 cheapish: nice beer
- * LHe expensive: med/nice cha
 - * meh, we'll make our own
 - * a big refrigerator (hex, cooling

* Nb-Ti likes about 4K (close to abs zero)

Acceleration

- * Everything is very close to c
- Mainly adding energy
- Space charge
- Ramp synchronize magnet strength w/ beam momentum/energy

Size/Superconducting

- * Opposition: machine size vs. max beam energy
- # Electricity: you need lots. CURRENT! ~4K amps
- Conductor ~1cm square
- * Nb-Ti

Machine Safety

- * Quench (real bad)
 - * beam hits pipe & adds energy
 - heats
 superconducting
 magnet
 - * magnet goes subsuperconducting

Safety system

- * warm magnet uniformly
- * vent coolants (expanding gas)
- # dump current

People Safety

- Interlocks
- Keys controlled entry
- Radiation
- # Electricity