
Chapter 7, "More
functional patterns"

Syntactic considerations
• lambda syntax:

\x -> x + 1
is equivalent to
f x = x + 1

• point-free style:
f x = x + 1
is equivalent to
f = (+1)

Function definition patterns
• pattern matching

• case expressions

• guards

Pattern matching
foo :: Bool -> Int
foo True = 1
foo False = 0

Case expression
foo :: Bool -> Int
foo b = case b of
 True -> 1
 False -> 0

Guards (v1)
foo :: Bool -> Int
foo b
 | b == True = 1
 | b == False = 0

Guards (v2)
foo :: Bool -> Int
foo b
 | b = 1
 | otherwise = 0

(BTW: otherwise isn't a keyword, it's just a synonym for True)

For next week: "Chapter 8:
Recursion"
• See exercise template here: https://gist.github.com/

twopoint718/875626818ea55cfa5ced3e81e1e12180

https://gist.github.com/twopoint718/875626818ea55cfa5ced3e81e1e12180
https://gist.github.com/twopoint718/875626818ea55cfa5ced3e81e1e12180

