
Chapter 5, "Types"

Background
• Haskell's basically the Lambda Calculus with types.

• Types layer over LC to make sure evaluation doesn't get
stuck

Summary (1/4)
• :type 't' - query a type in the REPL

• (->) a b - the arrow or function type (functions from a to b).
a and b are type variables.

• (+) :: Num a => a -> a -> a - typeclass constrained
type variables.
(Note: also valid are multiple constraints: (Num a, Num b)
=> a -> b -> a)

Summary (2/4)
• Arguments to functions are curried, or passed one-at-a-time.

(+) :: Num a => a -> a -> a
is really
(+) :: Num a => a -> (a -> a)

• Partial application
addStuff :: Integer -> Integer -> Integer
addStuff a b = a + b + 5
let addTen = addStuff 5

Summary (3/4)
• Explicit curry and uncurry functions

curry :: ((a, b) -> c) -> (a -> b -> c)
uncurry :: (a -> b -> c) -> ((a, b) -> c)

• Operator section
(+1) :: Num a => a -> a
argument order matters!
(2^) means "2 to the power of arg"
(^2) means "arg squared"

Summary (4/4)
• "parametric polymorphism" - a type variable in a signature

means it can be any type.

• id :: a -> a - identity function, because of parametricity,
we know that all this function can do is return its argument
(it can't have any type-dependent behavior)

• "type inference" - Haskell determines the type of
expressions automatically (when possible)

Next time

Chapter 6, "Typeclasses"
Exercise template

Make this source file compile and make the tests pass.

https://gist.github.com/
twopoint718/1c46ef58ee2dbc41ea186035938e97d2

https://gist.github.com/twopoint718/1c46ef58ee2dbc41ea186035938e97d2
https://gist.github.com/twopoint718/1c46ef58ee2dbc41ea186035938e97d2

