Functional

Programming

1936,

o

b tficks diverged.

Church

AF ST 2 AV S RNET PR

Understanding

Before | can understand some answer
| want to know what the IS

and that usually depends on

David Hilbert

[1 Towering mathematical figure in
the 20th century

[1 Proposes, among other things,
what becomes known as

http://en.wikipedia.org/wiki/Hilbert's_problems
http://en.wikipedia.org/wiki/Entscheidungsproblem

Entscheidungsproblem

German for “

Asks: “Here’s a statement in first-order logic, can you
give me an algorithm to decide if it is universally true?”

In solving this problem, both Turing and Church
BT IS

BTW: the answer to the D.P. turns out to be “no” In
general, but that’s a whole other talk!

——

First-order logic

hacks_ruby(x) = is_a_programmer(x)

“lItis , that if you program ruby then
you are also a programmer”

hacks_ruby(x) A hacks_haskell(x)
o who uses both ruby and haskell”

Question:
Entscheidungsproblem

|
|

Turing

Perhaps better-known of the two

...also did a bunch of other things like crack WWII
German codes, helped to design early computers, and
described a test for artificial intelligence...

just a few things...

Published “An Unsolvable Problem of Elementary
Number Theory” slightly before Turing, though Turing
didn’t know about it

A-Calculus

o-conversion (rename): (A X.X) 2 (Ay.Y)

B-reduction (apply): A X.xX)y—y

n-conversion (“cancel” args.): (A x . f(x)) = f

A-Calculus

Church encoding of numerals:

0 := Af.AXX

1:= AMAXTX

2 ;= ALAXf (f X)

3 := ALAXT (F (f X))

INC := An.AfAX.(f ((n f) X))
('V7, show that: INC 1 = 2)

ChurchTuring

S0, you can compute with either Turing machines or the
A-calculus...

and are

that can be computed can be computed by
the A-calculus and a Turing machine

e —— e ——

SO!? before functional
programming

Surprisingly then, or maybe not at all, there is

Functional programming was
that prompted “computation”

|
|

Here we are ~80 years
later

Church

AF ST 2 AV S RNET PR

Programming with

Functions

Functions

An object that has just one method, “cali”

A correspondence between inputs and outputs

each input is related to

What is it about this...

Person = Struct.new(:first, :last) do
def school name
"#{last}, #{first}"
end
end

me = Person.new("Chris", "Wilson")
me.school name
=> “Wilson, Chris”

...that looks the same as this?

Person = lambda do Ifirst, lastl

{

school_name: lambda { "#{last}, #{first}" }

}

end

me = Person["Chris", "Wilson"]
me[:school_namel](]
=> “Wilson, Chris”

...0r even?

Person = {
#

["Chris", "Wilson"] => "Wilson, Chris"

Person[["Chris", "Wilson"]]
=> “Wilson, Chris”

What is an object...

...buta in which to call a function?

Why do we distinguish between and any other
method call?

Functions can be called with args and return a
holding any needed state

Building programs

Objects structure code

little bit of state

little bit of behavior

Functions structure code

no state

all behavior

Abstraction

Composition

compose = lambda do If, gl
lambda do IxI

flg[x]]

end
end

addd = lambda{lx| x+5}
double = lambda{lx| x+x}

puts compose[add5, double][3]
#=>11

But then...

...It’s only useful for functions that take exactly
argument!?

That’s okay, because

Currying

You can always rewrite:

some_func(x,y) — some_func(x)(y)

Built into Ruby:

f = lambda{lx,yl x + y}.curry
f[2][3]
#=>5H

Currying and Compositon

compose_all = lambda do largsl
args.reduce do Imemo, fl
compose[memo, f]
end
end

add = lambda{lx, yl x + y}.curry
announce = lambda{lx| “Answer: (#{x})”}
funcs = [announce, add[5], double]

compose_all[funcs][3]
=> “Answer: (11)”

Change your perspective

You’ve all seen ?
[1, 2, 3].map{Ix| x*2} # => [2, 4, 6]

Used to thinking:

map :: (Int — Int) — [Int] — [Int]

With currying in hand, think of it like:

map :: (Int — Int) — ([Int] — [Int]

e

Change your perspective

map a function to a function
map a function to a function over

class
def fmap(obj); obj.fmap(self); end
end

class
def fmap(f); self.map(&f); end
end

lambda {IxIx*2}.fmap([1, 2, 3]) # => [2, 4, 6]

——

It’'s more general!

class

attr_accessor :name

def fmap(f); f[name]; end
end

u = User.new
u.name = “Chris Wilson”
lambda{lx| x.split}.fmap(u) # => [“Chris”, “Wilson”’]

Other possibilities for fmap

Empty-or-not values
Trees

Hashes

Three variations on

Yeah, let’s talk about map even more!

Watch for similarities

Variation 1:

We know this one: [1,2,3,4].map {Inin + 1}
(or lambda{ Inl n + 1}.fmap([1, 2, 3, 4]))

But, imagine no * ” values allowed

def foo(item)
item.map {Inin+1}

end

foo([1]) # => [2]

e ——t

Variation 1:

We’d need some “

def fmap(f, x)
X.map(&f)
end

fmap(->x{x+1}, [1, 2]) # => [2, 3]

Variation 2:

More (but familiar) plumbing:

def fmap(f, x)
X.inject({}) do Imemo, (k, v)l
memo[k] = f[v]; memo
end
end

fmap(->x{x+1}, {a: 1, b: 2}) # => {:a=>2, :h=>3}

e

Variation 3:

This may be a bit weirder, but think about it...

Yet more plumbing:

def fmap(f, x)
lambda { Iyl f.call(x.call(y)) }
end

fmap(->x{x+1}, ->y{y*2})[2] # => 5

Variation 3:

Did you catch that for Procs was just

plus1 = lambda{lx| x+1}; times2 = lambda{lx| x*2}

fmap(plusi, times2)[2]
Hi=>19

Think of a Proc as a kind of “holding” Its

fmap lets us that value!

——

Fmap’s similarities?

Is , INn some sense, the “same” In all these cases?

There’s a property of mapping Array,
Hash, or Function

Because fmap works for so many different things, it
behave like:

fmap(g, fmap(f, x)) == fmap(compose(g, f), x)
fmap(id, x) == id Xx

Parametric Polymorphism

or, Zen-like: “
Reason about things

Notice how we could talk about mapping yet never mention
Array?

Speak at a higher level, “all things that do this can also do that”
etc.

Best: “we don’t know what this Is, so we

——

Evaluation

Laziness

compute = lambda do Ix, vl

y
end

def expensive
puts "GREAT EXPENSE!"
L

end

puts compute[2, expensive]
GREAT EXPENSE!
#=>2

e ==

Laziness

Why did we need to evaluate
It wasn’t ever used!

Eager evaluation mixes concerns (cf. SoC)

Concern 1: computation embodied in the method

Concern 2: computation embodied in method’s
arguments

Laziness

We want to decouple code from its evaluation:

Scopes, method definitions, lambda/proc, FactoryGirl,
let blocks in RSpec...

Leads to general, modular, and pluggable code (good
things!)

Strict-by-default — often need laziness

Lazy-by-default & sometimes need strictness

e

Example: sorting

Q: what’s the time, as in O(N), for:

range.map{rand(1000)}.first

How about:

range.lazy.map{rand(1000)}.first

Times (N= le7):

F

g HOMELAND SECURITY

ADVISORY SYSTEM

SEVERE

ELEV AT ED
SIGNIFICANT RISK OF
TERRORIST ATTACKS

GUARDED

LOW

Mind-blowing threat level:
Elevated

take 1 (random_nums)

runs in time!

Potpourri

Property testing

If you take nothing else away from this talk, try this out!

If we know the domain (math sense) of a function,
shouldn’t the computer test it?

What hold? Rather than

Imagine that | wrote “sort” and wanted to test it...

Property testing

require '

sorting preserves length

RushCheck::Assertion.new(IntegerRandomArray) {larrl
arr.sort.length == arr.length

}.check

first element is min
RushCheck::Assertion.new(IntegerRandomArray) {larrl
arr.sort.first == arr.min

}.check

last element is max

RushCheck::Assertion.new(IntegerRandomArray) {larrl
arr.sort.last == arr.max

}.check

Property testing

HIROTES

OK, passed 100 tests.
OK, passed 100 tests.
OK, passed 100 tests.

| just wrote 300 tests

Property testing

imperative-style tests really well

Encourages

where input and output completely characterize the
function

Great for finding obscure

good libs also find a that still fails

————

Stuff I wouldn’t even try...

What does FP do better?

wrong question

what do | that | without
functional programming?

Static types

Most popular static languages have, essentially, types
like Algol/Pascal

C, C++, Objective C, Java, C#

Or are dynamic (no static type checking at all)

Lisp, JavaScript, Python, Ruby, Perl

Static types

A lot has happened with types in the last 40 years!

e.g. 0Caml, F#, Haskell, Scala, Rust

They can really expressiveness:

map ::(a = b) — [a] — [b]
find :: (@2 — Bool) — [a] — Maybe a
sort :: Ord a => [a] — [a]

Act as machine-checked comments that

——

Dependent types

Adding two vectors pairwise:

total

pairAdd : Numa=>Vectna->Vectna->Vectna
pairAdd Nil Nil = Nil
pairAdd (x::xs) (v::ys) = (x+y) :: pairAdd xs ys

ensures they are the same length

|
|

Resources

1. C9 Lectures: Functional Programming
Fundamentals
. Functional JavaScript
. Why Functional Programming Matters
. Functional Ruby
. Understanding Computation
. The Annotated Turing
. Gan Programming Be Liberated from the

von Neumann Style? (PDF)

CHARLES PETZOLD

THE ANNOTATED

Why Functional Programming Matters
\ Bgr g

John Hughes, Institutionen fr Datavetenskap,
Chalmers Tekniska Hogskola,
41296 Goiteborg,
SWEDEN. rjmhfics.chalmers.se

This paper doles from 1984, and circuleled a8 o (€ Ty
s S e v

ars. Sightly revised versions appea " ¥ and 1990 s
.

PROGRAMMING IN HASKELL

OREILLY

JavaScript

ORELLY”

http://channel9.msdn.com/Series/C9-Lectures-Erik-Meijer-Functional-Programming-Fundamentals/Lecture-Series-Erik-Meijer-Functional-Programming-Fundamentals-Chapter-1
http://www.amazon.com/Functional-JavaScript-Introducing-Programming-Underscore-js/dp/1449360726
http://www.cse.chalmers.se/~rjmh/Papers/whyfp.pdf
http://functionalruby.com
http://www.amazon.com/Understanding-Computation-Machines-Impossible-Programs/dp/1449329276/
http://www.amazon.com/dp/0470229055/
http://www.stanford.edu/class/cs242/readings/backus.pdf

And lots more...

(but you’ll have to ask)

Thanks

Chris Wilson

chris@bendyworks.com

@twopoint718

hitp://sencjw.com

mailto:chris@bendyworks.com
https://twitter.com/intent/tweet?source=webclient&text=%40twopoint718+re:+%22functional+programming%22
http://sencjw.com

