
Functional
Programming

In five easy parts

Part 1

Background

In 1936,
two tracks diverged…

Turing

Church

Aside: Understanding

Before I can understand some answer

I want to know what the question is

and that usually depends on history

David Hilbert

Towering mathematical figure in
the 20th century

Proposes, among other things,
what becomes known as
Entscheidungsproblem

http://en.wikipedia.org/wiki/Hilbert's_problems
http://en.wikipedia.org/wiki/Entscheidungsproblem

Entscheidungsproblem

German for “decision problem”

Asks: “Here’s a statement in first-order logic, can you
give me an algorithm to decide if it is universally true?”

In solving this problem, both Turing and Church define
what computation is

BTW: the answer to the D.P. turns out to be “no” in
general, but that’s a whole other talk!

Aside: First-order logic

∀x hacks_ruby(x) ⇒ is_a_programmer(x) 
“It is true for everyone, that if you program ruby then
you are also a programmer”

∃x hacks_ruby(x) ∧ hacks_haskell(x) 
“There’s someone who uses both ruby and haskell”

Question:
Entscheidungsproblem

Turing’s Answer

Turing

Perhaps better-known of the two

You can compute with a machine that has an infinite
paper tape…

…also did a bunch of other things like crack WWII
German codes, helped to design early computers, and
described a test for artificial intelligence…

just a few things…

Turing Machine

Church’s Answer

Church

Published “An Unsolvable Problem of Elementary
Number Theory” slightly before Turing, though Turing
didn’t know about it

You can compute using the λ-calculus…

Aside: λ-Calculus

α-conversion (rename): (λ x . x) → (λ y . y)

β-reduction (apply): (λ x . x) y → y

η-conversion (“cancel” args.): (λ x . f(x)) → f

Aside: λ-Calculus

Church encoding of numerals:

0 := λf.λx.x 
1 := λf.λx.f x 
2 := λf.λx.f (f x) 
3 := λf.λx.f (f (f x))

INC := λn.λf.λx.(f ((n f) x)) 
(IYI, show that: INC 1 = 2)

Church-Turing

So, you can compute with either Turing machines or the
λ-calculus…

λ-calculus and Turing machines are equivalent!

Anything that can be computed can be computed by
the λ-calculus and a Turing machine

SO!? before functional
programming

Surprisingly then, or maybe not at all, there is no before
functional programming

Functional programming was one of the answers to the
question that prompted “computation”

Here we are ~80 years
later

For whatever reason,
most programming

languages leaned toward

Turing

Churchinstead of

Part 2

Programming with
Functions

Functions

An object that has just one method, “call”

A correspondence between inputs and outputs

each input is related to just one output

What is it about this…

Person = Struct.new(:first, :last) do  
 def school_name 
 "#{last}, #{first}" 
 end 
end 
 
me = Person.new("Chris", "Wilson")  
me.school_name 
=> “Wilson, Chris”

…that looks the same as this?

Person = lambda do |first, last|
 {
 school_name: lambda { "#{last}, #{first}" }
 }
end
!

me = Person["Chris", "Wilson"]
me[:school_name][] 
=> “Wilson, Chris”

…or even?

Person = {  
 # ... 
 ["Chris", "Wilson"] => "Wilson, Chris"  
 # ... 
} 
 
Person[["Chris", "Wilson"]] 
=> “Wilson, Chris”

What is an object…

…but a context in which to call a function?

Why do we distinguish between .new() and any other
method call?

Functions can be called with args and return a closure
holding any needed state

Building programs

Objects structure code

little bit of state

little bit of behavior

Functions structure code

no state

all behavior

Part 3

Abstraction

Composition

compose = lambda do |f, g|
 lambda do |x|
 f[g[x]]
 end
end
!
add5 = lambda{|x| x+5}
double = lambda{|x| x+x}
!
puts compose[add5, double][3]
=> 11

But then…

…it’s only useful for functions that take exactly one
argument!?

That’s okay, because that’s all that there are.

Currying

You can always rewrite:

some_func(x, y) → some_func(x)(y)

Built into Ruby:

f = lambda{|x,y| x + y}.curry 
f[2][3] 
=> 5

Currying and Compositon

compose_all = lambda do |args| 
 args.reduce do |memo, f|  
 compose[memo, f] 
 end 
end
!
add = lambda{|x, y| x + y}.curry
announce = lambda{|x| “Answer: (#{x})”}
funcs = [announce, add[5], double]
!
compose_all[funcs][3]
=> “Answer: (11)”

Change your perspective

You’ve all seen map?

[1, 2, 3].map{|x| x*2} # => [2, 4, 6]

Used to thinking:

map :: (Int → Int) → [Int] → [Int]

With currying in hand, think of it like:

map :: (Int → Int) → ([Int] → [Int])

Change your perspective

map lifts a function over values to a function over arrays

fmap lifts a function over values to a function over values in a context

class Proc  
 def fmap(obj); obj.fmap(self); end  
end 
 
class Array  
 def fmap(f); self.map(&f); end 
end 
 
lambda {|x|x*2}.fmap([1, 2, 3]) # => [2, 4, 6]

It’s more general!

class User 
 attr_accessor :name 
 def fmap(f); f[name]; end 
end 
 
u = User.new 
u.name = “Chris Wilson” 
lambda{|x| x.split}.fmap(u) # => [“Chris”, “Wilson”]

Other possibilities for fmap

Empty-or-not values

Trees

Hashes

Other functions!

Three variations on fmap

Yeah, let’s talk about map even more!

Watch for similarities

Variation 1: Array

We know this one: [1, 2, 3, 4].map { |n| n + 1 } 
(or lambda{ |n| n + 1}.fmap([1, 2, 3, 4]))

But, imagine no “bare” values allowed

def foo(item) 
 item.map { |n| n + 1 } 
end 
foo([1]) # => [2]

Variation 1: Array

We’d need some “plumbing”

def fmap(f, x) 
 x.map(&f) 
end 
 
fmap(->x{x+1}, [1, 2]) # => [2, 3]

Variation 2: Hash

More (but familiar) plumbing:

def fmap(f, x) 
 x.inject({}) do |memo, (k, v)| 
 memo[k] = f[v]; memo 
 end 
end 
 
fmap(->x{x+1}, {a: 1, b: 2}) # => {:a=>2, :b=>3}

Variation 3: Proc

This may be a bit weirder, but think about it…

Yet more plumbing:

def fmap(f, x) 
 lambda { |y| f.call(x.call(y)) } 
end 
 
fmap(->x{x+1}, ->y{y*2})[2] # => 5

Variation 3: Proc

Did you catch that fmap for Procs was just compose?

plus1 = lambda{|x| x+1}; times2 = lambda{|x| x*2} 
fmap(plus1, times2)[2] 
=> 5

Think of a Proc as a kind of box “holding” its eventual
return value…

fmap lets us swap out that value!

Fmap’s similarities?

Is fmap, in some sense, the “same” in all these cases?

There’s a property of mapping independent of Array,
Hash, or Function

Because fmap works for so many different things, it
must behave like: 
 
fmap(g, fmap(f, x)) == fmap(compose(g, f), x) 
fmap(id, x) == id x

Parametric Polymorphism

or, Zen-like: “more general is more specific”

Reason about things regardless of specific type

Notice how we could talk about mapping yet never mention
Array?

Speak at a higher level, “all things that do this can also do that”
etc.

Best: “we don’t know what this is, so we can’t treat it specially”

Part 4

Evaluation

Laziness

compute = lambda do |x, y|
 return x if true
 y
end
!
def expensive
 puts "GREAT EXPENSE!"
 1
end
!
puts compute[2, expensive]  
GREAT EXPENSE! 
=> 2

Laziness

Why did we need to evaluate expensive?

It wasn’t ever used!

Eager evaluation mixes concerns (cf. SoC)

Concern 1: computation embodied in the method

Concern 2: computation embodied in method’s
arguments

Laziness

We often want to decouple code from its evaluation:

Scopes, method definitions, lambda/proc, FactoryGirl,
let blocks in RSpec…

Leads to general, modular, and pluggable code (good
things!)

Strict-by-default → often need laziness

Lazy-by-default → sometimes need strictness

Example: sorting

Q: what’s the time, as in O(N), for:

range.map{rand(1000)}.first

O(N)

How about:

range.lazy.map{rand(1000)}.first

O(1)

Times (N= 1e7): 3.6s vs 0.000029s

Aside: Bonus

Mind-blowing threat level:
Elevated

take 1 (sort random_nums)

runs in O(N) time!

Part 5

Potpourri

Property testing

If you take nothing else away from this talk, try this out!

If we know the domain (math sense) of a function,
shouldn’t the computer automatically test it?

What properties hold? Rather than what test cases can I
think of?

Imagine that I wrote “sort” and wanted to test it…

Property testing

require 'rushcheck'
!
sorting preserves length
RushCheck::Assertion.new(IntegerRandomArray) {|arr|
 arr.sort.length == arr.length
}.check
!
first element is min
RushCheck::Assertion.new(IntegerRandomArray) {|arr|
 arr.sort.first == arr.min
}.check
!
last element is max
RushCheck::Assertion.new(IntegerRandomArray) {|arr|
 arr.sort.last == arr.max
}.check

Property testing

Run this: 
OK, passed 100 tests. 
OK, passed 100 tests. 
OK, passed 100 tests.

I just wrote 300 tests

Property testing

Complements imperative-style tests really well

Encourages functional design

where input and output completely characterize the
function

Great for finding obscure edge cases

good libs also find a simpler thing that still fails

rant_mode do

Stuff I wouldn’t even try…

What does FP do better?

wrong question

what do I attempt that I wouldn’t even try without
functional programming?

Static types

Most popular static languages have, essentially, types
like Algol/Pascal

C, C++, Objective C, Java, C#

Or are dynamic (no static type checking at all)

Lisp, JavaScript, Python, Ruby, Perl

Static types

A lot has happened with types in the last 40 years!

e.g. OCaml, F#, Haskell, Scala, Rust

They can really improve expressiveness:

map :: (a → b) → [a] → [b]  
find :: (a → Bool) → [a] → Maybe a  
sort :: Ord a => [a] → [a]

Act as machine-checked comments that can’t lie

Dependent types

Adding two vectors pairwise:

total 
pairAdd : Num a => Vect n a -> Vect n a -> Vect n a  
pairAdd Nil Nil = Nil 
pairAdd (x::xs) (y::ys) = (x+y) :: pairAdd xs ys

Type system ensures they are the same length

end

Thanks!

Resources
1. C9 Lectures: Functional Programming

Fundamentals
2. Functional JavaScript
3. Why Functional Programming Matters
4. Functional Ruby
5. Understanding Computation
6. The Annotated Turing
7. Can Programming Be Liberated from the

von Neumann Style? (PDF)

http://channel9.msdn.com/Series/C9-Lectures-Erik-Meijer-Functional-Programming-Fundamentals/Lecture-Series-Erik-Meijer-Functional-Programming-Fundamentals-Chapter-1
http://www.amazon.com/Functional-JavaScript-Introducing-Programming-Underscore-js/dp/1449360726
http://www.cse.chalmers.se/~rjmh/Papers/whyfp.pdf
http://functionalruby.com
http://www.amazon.com/Understanding-Computation-Machines-Impossible-Programs/dp/1449329276/
http://www.amazon.com/dp/0470229055/
http://www.stanford.edu/class/cs242/readings/backus.pdf

And lots more…
(but you’ll have to ask)

Thanks
Chris Wilson

!
chris@bendyworks.com

!
@twopoint718

!
http://sencjw.com

mailto:chris@bendyworks.com
https://twitter.com/intent/tweet?source=webclient&text=%40twopoint718+re:+%22functional+programming%22
http://sencjw.com

